Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Measurement of thick target neutron yield at 180$$^{circ}$$ for a mercury target induced by 3-GeV protons

Matsuda, Hiroki; Iwamoto, Hiroki; Meigo, Shinichiro; Takeshita, Hayato*; Maekawa, Fujio

Nuclear Instruments and Methods in Physics Research B, 483, p.33 - 40, 2020/11

 Times Cited Count:3 Percentile:35.72(Instruments & Instrumentation)

A thick target neutron yield for a mercury target at an angle of 180$$^{circ}$$ from the incident beam direction is measured with the time-of-flight method using a 3-GeV proton beam at the Japan Proton Accelerator Research Complex (J-PARC). Comparing the experimental result with a Monte Carlo particle transport simulation by the Particle and Heavy Ion Transport code System (PHITS) shows that there are apparent discrepancies. We find that this trend is consistent with an experimental result of neutron-induced re- action rates obtained using indium and niobium activation foils. Comparing proton-induced neutron-production double-differential cross-sections for a lead target at backward directions between the PHITS calculation and experimental data suggests that the dis- crepancies for our experiments would be linked to the neutron production calculation around 3 GeV by the PHITS spallation model and/or the calculation of nonelastic cross-sections around 3 GeV in the particle transport simulation.

Journal Articles

Effect of proton beam profile on stress in JSNS target vessel

Kogawa, Hiroyuki; Ishikura, Shuichi*; Sato, Hiroshi; Harada, Masahide; Takatama, Shunichi*; Futakawa, Masatoshi; Haga, Katsuhiro; Hino, Ryutaro; Meigo, Shinichiro; Maekawa, Fujio; et al.

Journal of Nuclear Materials, 343(1-3), p.178 - 183, 2005/08

 Times Cited Count:8 Percentile:49.02(Materials Science, Multidisciplinary)

A cross-flow type (CFT) mercury target with flow guide blades, which has been developed for JSNS, can suppress the generation of stagnant flow region especially near the beam window where the peak heat density is generated due to spallation reaction. Then, a flat type beam window has been applied to the CFT target from the viewpoint of suppressing dynamic stress caused by a pressure wave, which has been estimated with a mercury model of the linear equation of state. The recent experimental results obtained by using a proton beam incidents to mercury led that a cutoff pressure model in the equation of state of mercury caused a suitable dynamic stress with experimental results. Dynamic stress analyses were carried out with the cutoff pressure model, in which the negative pressure less than 0.15 MPa was not generated. The generated dynamic stress in the flat beam window became much larger than that in a semi-cylindrical type window. However, the generated stress in the semi-cylindrical type beam window was over the allowable stress of SS316L under the peak heat density of 668 W/cc. In order to decrease the dynamic stress in the semi-cylindrical beam window, the incident proton beam was defocused to decrease the peak heat density down to 218 W/cm$$^{3}$$. As a result, the dynamic stress could be suppressed less than the allowable stress. On the other hand, due to defocus of the proton beam, high heat density was generated on the end of the flow guide blades, which caused high thermal stress exceeding the allowable stress. To decrease the thermal stress, several shapes of the blade ends were studied analytically, which were selected so as not to affect the mercury flow distribution. A simple thin-end blade showed low thermal stress below the allowable stress.

Journal Articles

Water flow experiments and analyses on the cross-flow type mercury target model with the flow guide plates

Haga, Katsuhiro; Terada, Atsuhiko*; Kaminaga, Masanori; Hino, Ryutaro

Nuclear Engineering and Design, 210(1-3), p.157 - 168, 2001/12

 Times Cited Count:3 Percentile:27.07(Nuclear Science & Technology)

The mercury target is used in the spallation neutron source driven by a high intensity proton accelerator. In this study the effectiveness of the cross-flow type mercury target structure was evaluated experimentally and analytically. Prior to the experiment, the mercury flow field and the temperature distribution in the target container were analyzed assuming the proton beam energy and power of 1.5GeV and 5MW. Then the average water flow velocity field in the target mock-up model, which was fabricated from plexiglass for a water experiment, was measured at room temperature using the PIV technique. Water flow analyses were also conducted. The experimental results showed that the cross-flow could be realized in most of the proton beam path area and the analytical result of the water flow velocity field showed good correspondence to the experimental result in the case of the Reynolds number of more than 4.83E5 at the model inlet. With these results, the effectiveness of the cross-flow type mercury target structure and the present analysis code system was demonstrated.

4 (Records 1-4 displayed on this page)
  • 1